Baeza-Yates, R. & Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison-Wesley, Wokingham, UK, [In Persian]
Nazari, M., Habibi, M. (2016). Review of novel methods LDA, LSA and PLSA in Textmining.
The First International Conference on new vistas in Electrical and Computer Engineering. retrieved on 5/20/2023 from
https://civilica.com/doc/555595
Sarmad, Z., Bazargan, A. & Hejazi. E. (2011). Research methods in behavioral sciences. Tehran. Agah.
Berry, M.W., Dumais, S.T., O’Brien, G.W. (1995). Using Linear Algebra for Intelligent Information Retrieval.
SIAM Review. Vol.37. No.4. pp. 575-595.
https://doi.org/10.1137/1037127
Berry, M.W., Dumais, S.T. & Shippy, A.T (1995). A case study of latent semantic indexing. Tech. Rep CS-95-271, University of Tennessee, Knoxville, January http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.1929
Bogers, T., Kox, K., & Van Den Bosch, A. (2008). Using Citation Analysis for Finding Expert in Workgroups.
In Proc. DIR, pp. 21-28. Retrieved on 10/02/2019 from
https://www.semanticscholar.org
Campell, C.S., Maglio, P.P., Cozzi, A., & Down, B. (2003). Expertise identification using email communications. In Proceedings of twelfth international conference on Information and knowledge management. pp. 528-531. ACM https://doi.org/10.1145/956863.956965
Chen, C.M., Paul, R.L. (2001). Visualizing a Knowledge domain’s intellectual Structure. IEEE Computer, vol. 34. No.3. 67-71. Retrieved on 25/10/2018 from http://www.pages.drexel.edu/~cc345/papers/ieeecomputer2001.pdf
Daud, A., Li, J., Zhou, L., Muhammad, F. (2010). Temporal Expert Finding through Generalized Time Topic Modeling. Knowledge-Based System. Pp.615-625. https://doi.org/10.1016/j.knosys.2010.04.008
Deerwester, S., Dumais, s. T. Furnas, G. W., Landauer, T. K. (1990). Indexing by Latent Sematic Analysis. Journal of the American Society of Information Science. Vol. 4. No.6. pp. 391-407. Retrieved on 25/10/2018 from http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
Ehrlich, K., Lin, C. Y., & Griffiths-Fisher, V. (2007). Searching for experts in the enterprise: combining text and social network analysis. In Proceedings of the 2007 international ACM conference on supporting group work (pp. 117-126). ACM. Retrieved on 25/10/2018 from http://www.sciweavers.org/publications/searching-experts-enterprise-combining-text-and-social-network-analysis.
Fang, H. and Zhai, C. (2007). Probabilistic models for expert finding. In ECIR, pages 418–430 DOI: 10.1007/978-3-540-71496-5_38
Fu, Y., Xiang, R., Zhang, M., Liu, Y., & Ma, Sh. (2006). A PDD-Based searching Approach for Expert Finding in International Information Management. In AIRS, LNCS 482, pp. 43-53. DOI: 10.1007/11880592_4
Li, J., Tang, J., Zhang, J., Luo, Q., Liu, Y., & Hong, M. (2007). Eos: expertise oriented search using social networks. In Proceedings of the 16th international conference on World Wide Web (pp. 1271-1272). ACM. DOI:10.1145/1242572.1242803
Lightenberg, Wouter, Pei, Yulong. (2017). Introduction to Temporal. Benchmark.ArXiv: 1703.02852[cs.sl. https://doi.org/10.48550/arXiv.1703.02852
Kanhabua, N, Nøvag, K. (2010). Determining Time of Queries for Re-ranking Search Results. Retrieved on 25/10/2018 from at: https://pdfs.semanticscholar.org/be2b/eae7c24866b270ea1d583ac8d2daa8e91770.pdf
Macdonald, C. (2009). The voting model for people search. PhD thesis. University of Glasgow. Retrieved on 25/10/2018 from: https://theses.gla.ac.uk/609/
Magerman, T.; Looy, B.V. & Song, X. (2010). Exploring the feasibility and accuracy of Latent Semantic Analysis based text-mining techniques to detect similarity between patent and scientific publications. Scientometrics, Vol. 82, No. 2, 289-306. https://doi.org/10.1007/s11192-009-0046-6
Mathews, L., Kanmani, S.D. (2012). A Survey on Temporal Information Retrieval Systems. International Journal of Computer Applications. Vol. 58. No. 4. pp. 24-28 Retrieved on 25/10/2018 from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.736.6511&rep=rep1&type=pdf
Michail, O. (2015). An Introduction to Temporal Graphs: An Algorithmic Prospective. Retrieved on 29/12/2018 from: https:arixv.org
Omidvar, A., Garakani, M., & Safarpour, R. (2014). Context based user rankig in forums for expert finding using WordNet dictionary and social network analysis. Inf Techno Manag. 15: 51-63. https://doi.org/10.1007/s10799-013-0173-x
Sanderson, M. (2010). Test Collection based evaluation of Information retrieval systems. Foundation and Trends in Information retrieval. 4(4), 247-37. Retrieved on 27/10/2018 from: https://www.ccs.neu.edu/home/vip/teach/IRcourse/IR_surveys/FnTIR.pdf 5
Serdyukov, P. & Hiemstra, D. (2008). Modeling Documents as Mixtures of Person for Expert Finding. In ECIR, LNCS 4956, pp. 309-320. DOI: 10.1007/978-3-540-78646-7_29
Zhang, J., Ackerman, M. S., & Adamic, L. (2007). Expertise networks in online communities: structure and algorithms. In
Proceedings of the 16th international conference on World Wide Web (pp. 221-230). ACM.
https://doi.org/10.1145/1242572.1242603
Zhang, J. Tang, J & Li, J. (2007). Expert Finding in a Social Network. In DASFAA, LNCS 4443, pp. 1066-1069. DOI: 10.1007/978-3-540-71703-4_106
Zhang J. Tang, J., Liu, L., & Li, J. (2008). A Mixture for Expert Finding. PAKDD, LANI 5012. Pp. 466-478. DOI: 10.1007/978-3-540-68125-0_41
Zhou, D., Orshanskiy, S., Zha, H., & Giles, C.L. (2007). Co-Rankig Authors and Documents in a Heterogeneous Network.
IEEE Computer Society. pp. 739-744. DOI
10.1109/ICDM.2007.57
Send comment about this article